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Abstract. The theoretical framework for investigating the critical behaviour of an Ising multilayer
system consisting of alternating spin-1/2 and spin-S (S = 1

2) magnetic layers is given within the
cluster approximation introduced into the differential operator technique. It has the statistical
accuracy corresponding to the Bethe–Peierls approximation. The critical temperaturesTC of some
multilayer systems are studied numerically. We find some characteristic features, including the
behaviour of a critical transverse field in the transverse spin-1/2 ferromagnetic multilayer system
and the different behaviour of theTC curve in an alternating spin-1/2 and spin-S (S > 1

2) Ising
multilayer system, depending on whetherS is an integer or a half-integer.

1. Introduction

In recent years, the research on thin magnetic films with multilayer structures has received
much interest both from the theoretical and experimental point of view. These new materials
give the potential for many technological advances in information storage [1]. The study of
a magnetic multilayer has been motivated by the concept that the magnetic properties may be
significantly different from those of their constituents. In fact, many new phenomena have
been observed in these magnetic systems [1]. Furthermore, there has been considerable interest
in the theoretical and experimental study of thin ferroelectric films [2]. From the theoretical
point of view, ferroelectric films have been described with an Ising model in a transverse field.
An infinite ferroelectric superlattice with alternating two different slabs has been examined
within such a model [3].

The effective-field theory (EFT) with correlation based on Ising spin identities [4, 5] has
been widely used for Ising spin systems. Although mathematically simple, this approach has
proved to be superior to the standard mean-field approximation and has been successfully
applied to a variety of thin (ferromagnetic or ferroelectric) film problems [6–9] as well as
infinite superlattice problems [10–12]. The EFT just corresponds to the Zernike approximation
[13] when it is applied to spin-1/2 Ising problems. It has often been called the single-site
cluster approximation. Over two decades, attempts have been made to extend the effective-
field method within the framework of the single-site cluster theory to the two-site cluster
approximation, such as the correlated EFT [14] and the two-site EFT [15] based on both
Ising spin identities and the differential operator technique. In these approaches, the intra-
cluster spin correlation is taken into account, so that the obtained value of critical temperature
is improved. As far as we know, however, the concept of the effective-field corresponding
to the so-called Bethe–Peierls approximation of a spin-1/2 Ising problem [16] has not been
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introduced into the effective-field method based on Ising spin identities (namely the differential
operator technique). Such a trial has been done very recently by the present author [17] and
also the Bethe–Peierls approximation of a spin-1/2 Ising problem has been extended to a
higher spin (S > 1

2) Ising problem.
The aim of this work is to study the critical property (transition temperature or critical

transverse field) of an Ising multilayer system within the new framework of the cluster
approximation introduced into the differential operator technique. The system consists of
alternating two ferromagnetic monolayers (A and B) with different bulk (two-dimensional)
properties coupled with an interlayer coupling, such as ferrimagnetic Fe2O4/CoFe2O4

multilayers [18] (or ferroelectric BaTiO3/SrTiO3 multilayers [19]). The two magnetic
constituents A and B are considered to have different spins. SpinSA in the monolayer A
is fixed atSA = 1

2 and spinSB of the monolayer B is taken as an arbitrary spin value (SB = 1
2).

Furthermore, whenSB > 1
2, we would like to study the influence of single-ion anisotropyD

in the monolayer B on the transition temperature, as has been done in [10]. Theoretically, it is
important to treat these problems within a simple framework.

The outline of this work is as follows. In section 2, we present the general formulation
of a multilayer Ising spin system within the framework of the cluster (Bethe–Peierls-like)
approximation. The general formulation of the transition temperature in the system is derived
in section 3. In section 4, we study the phase diagrams of an Ising multilayer system with
SA = SB = 1

2 in a transverse field as a special case of the general formulation. The results
obtained numerically prove that the formulation is equivalent to that of the Bethe–Peierls
approximation for spin-1/2 Ising problems. It is shown that the critical transverse field at which
the transition temperature reduces to zero exhibits a characteristic behaviour. In section 5, the
effects of single-ion anisotropy on the transition temperature in the multilayer system with
SA = 1

2 andSB = 1
2 are investigated numerically, selecting the two values ofSB asSB = 1

andSB = 3
2 and taking some typical values of exchange interactions. We also find some

characteristic behaviour of theTC curve induced by the negative single-ion anisotropy on
monolayer B for the system withSB = 1 (or an integer spin).

2. Formulation

We consider a ferromagnetic multilayer system, consisting of two alternating magnetic
monolayers (A and B) with different spins (SA = 1

2 andSB = 1
2). For simplicity, we restrict

our attention to the case of an infinite simple cubic Ising-type structure where each monolayer
is defined on thex–y plane. The Hamiltonian of the system is given by

H = −JA
∑
(ij)

µzi µ
z
j − JB

∑
(mn)

SzmS
z
n − JAB

∑
(im)

µzi S
z
m −D

∑
m

(Szm)
2 (1a)

or

H = −JA
∑
(ij)

µzi µ
z
j − JB

∑
(mn)

SzmS
z
n − JAB

∑
(im)

µzi S
z
m −�

(∑
i

µxi +
∑
m

Sxm

)
(1b)

where the first two summations are carried out only over nearest-neighbour pairs of spins in A
and B layers.µzi andSαm (α = z andx) are spin operators on monolayers A and B, respectively.
D in (1a) is the single-ion anisotropy constant which should be taken into account whenSB >

1
2.

� in (1b) is a transverse field.Jα (α = A or B) is the exchange interaction constant in the
monolayerα. JAB is the interlayer exchange constant.

The problem is now the evaluation of the expectation valuesσ0 = 〈µzi 〉 andm0 = 〈Szm〉
when the sitei orm is selected as the central site of the spin cluster. It can be done by the use
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of both exact Ising spin identities [20, 21] and the differential operator technique [4, 5], when
we treat the multilayer system with (1a). They are given by

σ0 = 〈µzi 〉 = 〈exp(θi∇)〉f (x)|x=0 (2)

with

θi = JA
∑
δ

µzi+δ + JAB
∑
δ′
Szi+δ′ (3)

and

m0 = 〈Szm〉 = 〈exp(2m∇)〉F(x)|x=0 (4)

with

2m = JB
∑
δ

Szm+δ + JAB
∑
δ′
µzm+δ′ (5)

whereδ andδ′ denote the nearest neighbours of sitesi andm and∇ = ∂/∂x is a differential
operator. The functionf (x) is given by, when we consider the multilayer system described
by the Hamiltonian (1a),

f (x) = 1
2 tanh( 1

2βx) (6)

with β = 1/kBT . The explicit form of functionF(x) then depends on the value ofSB , and
is given in appendix A. In the following, the formulation will be discussed for the multilayer
system described by the Hamiltonian (1a), but it can be easily extended to the multilayer
system in a transverse field presented by the Hamiltonian (1b), when the functionsf (x) and
F(x) are replaced by those in a transverse field [5, 22].

In order to rewrite (2) and (4) in the treatable forms, let us introduce the exact Ising spin
identity

exp(cµzi ) = cosh(c/2) + 2µzi sinh(c/2) (7)

for SA = 1
2 and the approximated identity

exp(cSzm) = cosh(η0c) + (Szm/η0) sinh(η0c) (8)

with

(η0)
2 = 〈(Szm)2〉 = 〈exp(2m∇)〉G(x)|x=0 (9)

for SB = 1
2, where the functionG(x) also depends on the value ofSB and the explicit form is

given in appendix A. WhenSB = 1
2, (8) reduces exactly to (7) becauseη0 = 1

2. Using these
relations, (2) and (4) can be written in the forms

σ0 =
〈∏

δ

[cosh(a/2) + 2µzi+δ sinh(a/2)]
∏
δ′

[cosh(η1c) + (Szi+δ′/η1) sinh(η1c)]

〉
f (x)|x=0

(10)

with

(η1)
2 = 〈(Szi+δ′)2〉 (11)

and

m0 =
〈∏

δ

[cosh(η2b) + (Szm+δ/η2) sinh(η2b)]
∏
δ′

[cosh(c/2) + 2µzm+δ′ sinh(c/2)]

〉
F(x)|x=0

(12)

with

(η2)
2 = 〈(Szm+δ′)

2〉 (13)
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wherea = JA∇, b = JB∇ andc = JAB∇. The parameterη0 defined by (9) is also given by

(η0)
2 =

〈∏
δ

[cosh(η2b) + (Szm+δ/η2) sinh(η2b)]

×
∏
δ′

[cosh(c/2) + 2µzm+δ′ sinh(c/2)]

〉
G(x)|x=0. (14)

In order to obtain the statistical accuracy corresponding to the Bethe–Peierls
approximation, let us now define the effective spin operators for the perimeter spins of central
spinsµzi andSzm, namelyµzi+δ, S

z
i+δ′ , µ

z
m+δ andSzm+δ′ , defined in (10) and (12), as

µzi+δ = a1 + 2a2µ
z
i ≡ A

Szi+δ′ = b1 + 2b2µ
z
i ≡ A′

Szm+δ = b3 + b4S
z
m = B

µzm+δ′ = a3 + a4S
z
m = B ′

(15)

with
a1 = cosh(a/2)f (x + 3hAA + 2hBA)|x=0

a2 = sinh(a/2)f (x + 3hAA + 2hBA)|x=0

b1 = cosh(c/2)F (x + 4hBB + hAB)|x=0

b2 = sinh(c/2)F (x + 4hBB + hAB)|x=0

b3 = cosh(η0b)F (x + 3hAA + 2hBA)|x=0

b4 = (1η0) cosh(η0b)F (x + 3hAA + 2hBA)|x=0

a3 = cosh(η0c)f (x + 4hAA + hBA)|x=0

a4 = (1/η0) sinh(η0c)f (x + 4hAA + hBA)|x=0

(16)

wherehαβ represents the unknown effective field per spin acting from an atom on the monolayer
α to an atom on the monolayerβ. Performing the thermal average of (15), we obtain

σ1 = 〈µzi+δ〉 = a1 + 2a2σ0

m1 = 〈Szi+δ′ 〉 = b1 + 2b2σ0

m2 = 〈Szm+δ〉 = b3 + 2b4m0

σ2 = 〈µzm+δ′ 〉 = a3 + 2a4m0.

(17)

Here, the physical background of (15) and (17) comes from the following approximation: for
instance,

〈µzi+δ〉 = 〈exp(θi+δ∇)〉f (x)|x=0 (18)

with

θi+δ = JAµzi + JA6µ
z
i+δ+δ′ + JAB6S

z
i+δ+δ′ ; JAµzi + 3hAA + 2hAB. (19)

By performing the same procedure as (17), the parameters defined by (11) and (13) are
given by

(η1)
2 = d1 + 2d2σ0

(η2)
2 = d3 + d4m0

(20)

with
d1 = cosh(c/2)G(x + 4hBB + hAB)|x=0

d2 = sinh(c/2)G(x + 4hBB + hAB)|x=0

d3 = cosh(η0b)G(x + 3hBB + 2hAB)|x=0

d4 = (1/η0) sinh(η0b)G(x + 3hBB + 2hAB)|x=0.

(21)
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Substituting (15) into (10), (12) and (14), we obtain

σ0 = 〈[cosh(a/2) + 2A sinh(a/2)]4[cosh(η1c) + (A′/η1) sinh(η1c)]
2〉f (x)|x=0 (22)

m0 = 〈[cosh(η2b) + (B/η2) sinh(η2b)]
4[cosh(c/2) + 2B ′ sinh(c/2)]2〉F(x)|x=0 (23)

(η0)
2 = 〈[cosh(η2b) + (B/η2) sinh(η2b)]

4[cosh(c/2) + 2B ′ sinh(c/2)]2〉G(x)|x=0. (24)

Within the present cluster theory, the four unknown parametershαβ are included through
the coefficients defined by (15). They can be determined from the four conditions, namely

σ1 = σ2 m1 = m2 (25)

and

σ0 = σ1(or σ2) m0 = m1(orm2). (26)

3. Transition temperature

Let us discuss how the transition temperature of a multilayer system can be obtained from the
formulation in section 2. In the vicinity of the transition temperatureTC , we can assume that
the four parametershαβ are very small. The coefficientsa1, b1, b3 anda3 in (15), (16) and
(17) are proportional to the parametershαβ , but other coefficients can be taken as constants
independent of the four parametershαβ : for instance,a2 = f (JA/2).

Expanding the right hand sides of (22)–(24) and taking the terms linear in the parameters
hαβ as well asσ0 andm0, (22) can be written as

σ = U1(3 + 2γ ) +U2(4ε + δ) (27)

with

U1 = 8O1

1− 401
U2 = 2O2

1− 401
(28)

and the equation (23) is given by

m = U3(4 +γ ) +U4(3ε + 2δ) (29)

with

U3 = 4P1

1− 402
U4 = 4P2

1− 402
(30)

whereσ ,m, γ , ε andδ are defined by

σ = (σ0/βhAA) m = (m0/βhAA) γ = (hBA/hAA) ε = (hBB/hAA)
andδ = (hAB/hAA). (31)

The coefficientsO1,O2,P1,P2,01 and02 are defined in appendix B. From (24), the parameter
η0 (or q0 = (η0)

2) can be determined by solving the equation numerically

q0 = Q1 + 2q0[3Q2(b2)
2 + 8Q3a4b4 + 2Q4(a4)

2]

+(q0)
2[Q5(b4)

4 + 16Q6a4(b4)
3 + 24Q7(a4)

2(b4)
2] + 4(q0)

3Q8a4(b4)
4 (32)

where the coefficientsQi (i = 1–8) are defined in appendix B.
At this point, one should notice that, when expanding the right hand sides of (22)–(24),

the averaged value of a moment higher thanSzm may appear, such as〈(Szm)n〉 with an integern
larger thann = 1. It can be easily calculated from

〈exp(xSzm)〉 = cosh(η0x) +
〈Szm〉
η0

sinh(η0x) (33)
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by differentiating both sides of it; for example

〈(Szm)3〉 = [(∇)3〈exp(xSzm)〉]x=0 = q0〈Szm〉.
On the other hand, from (17),σ0 = σ1 andm0 = m1, we can obtain the relations

σ = U5(3 + 2γ ) (34)

and

m = U6(3ε + 2δ) (35)

with

U5 = R1

1− 2a2
andU6 = R2

1− b4
(36)

whereR1 andR2 are defined by

R1 = 1

β
[∇f (x)]x=r andR2 = 1

β
[∇F(x)]x=s (37)

wherer = JA/2 ands = JBη0. Furthermore, from the relationsm1 = m2 andσ1 = σ2, we
can obtain the two equations

σ = U7

d0
− U8

d0
γ +

U9

d0
ε − U10

d0
δ (38)

and

m = U11

d0
− U12

d0
γ +

U13

d0
ε − U14

d0
δ (39)

with

d0 = a2b4 − a4b2 (40)

where the coefficientsUi (i = 7–14) are defined in appendix B.
By the use of these six relations forσ andm, we can obtain the matrix equation

M


1
γ

ε

δ

 = 0 (41)

with

M =


3(U1− U5) 2(U1− U5) 4U2 U2

4U3 U3 3(U4 − U6) 2(U4 − U6)

(3d0U1− U7) (2d0U1 +U8) (4d0U2 − U9) (d0U2 +U10)

(4d0U3− U11) (d0U3 +U12) (3d0U4 − U13) (2d0U4 +U14)

 . (42)

The transition temperature of an Ising multilayer system described by (1a) or (1b) can be
determined from the condition

detM = 0. (43)
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4. Spin-1/2 multilayer system in a transverse field

The formulation given in sections 2 and 3 at first sight seems to be rather different from the
standard method of the Bethe–Peierls approximation applied to a spin-1/2 Ising system. In
this section, let us discuss numerically that the results of the spin-1/2 Ising multilayer system
in a transverse field obtained from the formulation are completely equivalent to these of the
Bethe–Peierls approximation.

The starting point for the examination of the multilayer system described by (1b) where
Sαm (α = z andx) are the spin-1/2 operators is to use the approximated relation introduced in
[23]. Then, the functionf (x) in (2) should be replaced by

f (x) = 1

y
tanh

(
β

2
y

)
(44)

with

y = (x2 +�2)1/2. (45)

Furthermore, the functionF(x) defined in (4) is also given by (44) and the parametersη0, η1

andη2 defined by (9), (11) and (13) must beη0 = η1 = η2 = 1
2. Then, the approximated

identity (8) withη0 = 1
2 becomes equivalent to the identity (7). Substituting these relations into

(42) and (43) and solving them numerically, we can obtain the transition temperatureTC of the
Ising multilayer system in a transverse field consisting of alternating spin-1/2 ferromagnetic
monolayers with different properties.

First, let us show the numerical result of the multilayer system with� = 0.0, introducing
the following ratios

A = JA/J B = JB/J andC = JAB/J. (46)

As shown in figure 1, the transition temperature of the system with a fixed value ofB may
change continuously with variation ofC and theTC curves reduce to the same point atC = 0.0
which is given by 4kBTC/J = 2.8854. AtC = 0.0, the multilayer system is decomposed
into two independent spin-1/2 monolayers and hence theTC must be equivalent to theTC
result of the two-dimensional Ising system (z = 4), if our formulation is equivalent to that
of the spin-1/2 Bethe–Peierls approximation (or 4kBTC/J = 2/[log{(z/(z− 2)}], wherez is
a coordination number). TheTC result atC = 0.0 is clearly nothing but the Bethe–Peierls
one. Furthermore, whenA = B = C = 1.0, the multilayer system reduces to the spin-1/2
simple cubic Ising system and hence theTC must be 4kBTC/JA = 4.9327 forz = 6, when
the present formulation is equivalent to the Bethe–Peierls approximation. It is also satisfied in
figure 1, when puttingA = B = C = 1.0. Thus, the formulation given in section 3 reproduces
correctly theTC values of the Bethe–Peierls approximation in the limits.

Figure 2 shows the phase diagram (TC versus� plot) of the spin-1/2 multilayer system,
selectingA = 1.0 andB = 0.5 and changing the value ofC fromC = 1.0 toC = 0.0. Each
curve decreases monotonically with the increase of� and reduces to zero at the critical value
�C . In particular, whenC = 0.0, the critical value�C is given by 2�C/JA = 2.3934 which
value is independent of the value ofB, as is understood from figure 1 (or see figure 3). The
critical value can be compared with that of the EFT (2�C/J = 2.752 forz = 4).

In figure 3, the critical value�C of the multilayer system withA = 1.0 is plotted as a
function ofC, changing the value ofB fromB = 1.0 toB = 0.0. As discussed in figure 2, the
critical value�C for the system withC = 0.0 is given by 2�C/JA = 2.3934 in figure 3. The
critical value�C for the system withA = B = C = 1.0 is then given by 2�C/JA = 4.4813,
which should be compared with that of the EFT (2�C/J = 4.706 for z = 6) [17, 22]. In
particular, one should notice that the features of the�C versusC plots are rather similar to
those of figure 1, although, in detail, some small differences can be observed.
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Figure 1. The phase diagram (TC versusJAB/J plot) of the spin-1/2 Ising multilayer system with
JA/J = A = 1 and zero transverse field (� = 0.0), when the value ofB(≡ JB/J ) is changed
fromB = 1.0 toB = 0.0 with the variation of 0.2.

Figure 2. The phase diagram (TC versus� plot) of the spin-1/2 Ising multilayer system with
A = 1.0 andB = 0.5, when the value ofC(≡ JAB/J ) is changed fromC = 1.0 toC = 0.0 with
the variation of 0.2.
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Figure 3. The critical value�C of � at which theTC curve of figure 2 reduces to zero is plotted
as a function ofJAB/J for the spin-1/2 Ising multilayer system withA = 1.0, when the value of
B(≡ JB/J ) is changed fromB = 1.0 toB = 0.0 with the variation of 0.2.

5. Some numerical results

In this section, let us show some typical results of theTC curve in the Ising multilayer system
with a spin valueSB (SB > 1

2) described by the Hamiltonian (1a) by solving (42) and (43)
numerically. In particular, it is important to compare the present results with those obtained
from the framework of the EFT in [10] and [11] for the same Ising multilayer system.

Figure 4 shows theTC versusD plots in two Ising multilayer systems with fixed values of
SB = 3/2 andC = 0.1, selecting the values ofA andB asA = 1.0,B = 0.5 in figure 4(a) and
A = 0.5,B = 1.0 in figure 4(b). In the figure, the curves labelled EFT are the results obtained
from the framework of the EFT in [10] and the curves labelled BP are the present results. The
features of figure 4 clearly express that the present formulation improves theTC value of the
multilayer system in a reasonable direction. In particular, one should notice that theTC curves
labelled EFT and BP in figure 4 go to the same values in the limit ofD/J → −∞. In the
limit, the spin state of B monolayers is given by theSzm = ± 1

2 state, the multilayer system of
figure 4(a) is equivalent to that of figure 4(b) and hence theTC values of the two systems must
be identical.

In figure 5, theTC versusD plots of the multilayer systems withSB = 1 andC = 0.1
are depicted by selecting the same values ofA andB as these of figure 4. The curves labelled
EFT and BP in figure 5(a) exhibit behaviour similar to that of figure 4(a), while the curves of
figure 5(b) are clearly different from those of figure 4(b) and 5(a). Both figures show clearly
that the present formulation improves theTC value in a reasonable direction. In particular,
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(a)

(b)

Figure 4. TheTC curve of the Ising multilayer system with a fixed value ofC (C = 0.1) consisting
of alternating spin-1/2 monolayer and spin-3/2 monolayer is depicted as a function of single-ion
anisotropyD on spin-3/2 atoms, taking the two theoretical frameworks and selecting the two cases,
namely the system withA = 1.0 andB = 0.5 in (a) and the system withA = 0.5 andB = 1.0
in (b). The curves labelled EFT and BP express the results obtained from the effective-field theory
with correlation (EFT) [10] and the present framework, respectively.

the horizontal lines in figure 5 observed for large negative values ofD give theTC values
of the two-dimensional spin-1/2 Ising system, namely 4kBTC/J = 3.090 for the EFT and
4kBTC/J = 2.885 for the Bethe–Peierls approximation. The reason comes from the fact that
the spin state of B monolayers atT = 0 K may change from theSzm = ±1 state to theSzm = 0
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(a)

(b)

Figure 5. TheTC curve of the Ising multilayer system with a fixed value ofC (C = 0.1) consisting
of alternating spin-1/2 monolayers and spin-1 monolayers is depicted as a function of single-ion
anisotropyD on spin-1 atoms, taking the two theoretical frameworks and selecting the two cases,
namely the system withA = 1.0 andB = 0.5 in (a) and the system withA = 0.5 andB = 1.0
in (b). The curves labelled EFT and BP express the results obtained from the effective-field theory
with correlation (EFT) [10, 11] and the present framework, respectively.

state at the critical valueDC of D; it is given by

DC

JA
= −

[
2

(
JB

JA

)
+
JAB

JA

]
. (47)

WhenD < DC , the ground state of the B monolayer is given by theSzm = 0 state and hence
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the transition temperature of the multilayer system becomes equivalent to that of the spin-1/2
square lattice withz = 4, as shown in figures 5(a) and 5(b).

As has been discussed in [10], however, one should notice that the results of figure 5 might
not give the correct phase diagrams of the multilayer system withSB = 1. In fact, a spin-1
Ising system with a negativeD (or the Blume–Capel model) exhibits a tricritical point in the
phase diagram at which the phase transition changes from second order to first order. Within
the formulation of the EFT, we have discussed in [10] that such a tricritical behaviour may be
observed even in the Ising multilayer system with an integer value ofSB (SB = 1): the double-
valued phenomenon observed for the negative region ofD in figure 5(b) implies that tricritical
behaviour may exist in the multilayer system withSB = 1. Thus, as discussed in [10], two
critical points where the second-order transition line is separated into the first-order transition
may appear in theTC curves of figure 5, although such a discussion has been neglected in [11].

6. Conclusions

In this work, we have discussed the cluster theory of a simple cubic Ising multilayer system
consisting of two alternating magnetic monolayers A and B within the framework of the
differential operator technique. As shown in sections 4 and 5, the cluster theory presents
the same accuracy of the transition temperature as that obtained from the Bethe–Peierls
approximation of the spin-1/2 Ising model, when the spin valueSB of B monolayers is taken
asSB = 1

2 or can be seen as if it is in theSzm = ± 1
2 state. When we use the approximated

relation (8) forSB > 1
2, the statistical accuracy becomes a very little worse than that of

the Bethe–Peierls approximation, as noted in [17]. But, one should notice that the present
formulation is rather different from the standard treatment of the Bethe–Peierls approximation.

The formulation ofTC derived in section 3 can be applied to a certain Ising multilayer
system described by the Hamiltonian (1a) or (1b). For instance, it can be also applied to study
the phase diagram of an Ising multilayer system withSA = 1

2 andSB > 1
2 in a transverse

field, while we have examined the place diagram of the transverse Ising multilayer system
with SA = SB = 1

2 in section 4.
On the basis of the formulation of section 3, we have, in section 5, examined the behaviour

of TC with the variation ofD for the Ising multilayer system with the Hamiltonian (1a). The
formulation can be applied reasonably to a bilayer system with a half-integer spinSB , as shown
in figure 4. But, the results of figure 5(b) clearly indicate that tricritical behaviour may exist
in the Ising multilayer system with an integer spinSB , as discussed in [10]. For clarification,
we need to investigate the temperature dependence of the total magnetization in the system,
like [10].

Finally, one should notice that the present formulation for calculating theTC of the
ferromagnetic multilayer system can be also applied straightforwardly to the ferrimagnetic
multilayer system with a negative value ofJAB . Of course, the present approach is based on
the effective field concept introduced in section 2, so that we could not derive accurate critical
indices.

Appendix A

The functionsF(x) andG(x) defined in (4) and (9) for the system with the Hamiltonian (1a)
are given by

F(x) = 2 sinh(βx)

2 cosh(βx) + exp(−Dβ) (A.1)
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and

G(x) = 2 cosh(βx)

2 cosh(βx) + exp(−Dβ) (A.2)

for SB = 1,

F(x) = 1

2

3 sinh(1.5xβ) + exp(−2Dβ) sinh(0.5xβ)

cosh(1.5xβ) + exp(−2Dβ) cosh(0.5xβ)
(A.3)

and

G(x) = 1

4

9 cosh(1.5xβ) + exp(−2Dβ) cosh(0.5xβ)

cosh(1.5xβ) + exp(−2Dβ) cosh(0.5xβ)
(A.4)

for SB = 3/2, where these functions forSB > 3/2 can be easily derived and can be also
obtained from [5]. When one treats the multilayer system withSB >

1
2 in a transverse field

(or the system described by (1b)), the functionsF(x) andG(x) are defined in [20].

Appendix B

The coefficientsO1,O2, P1, P2, 01 and02 defined in (28) and (30) are given by

O1 = R1[K1 + 12K2(a2)
2 + 12K4a2b2 +K5(b2)

2 + 16K6(a2)
3b2 + 12K7(a2)

2(b2)
2] (B.1)

O2 = R3[K2 + 24K4(a2)
2 + 8K5a2b2 + 16K6(a2)

4 + 32K7b2(a2)
3] (B.2)

P1 = R4[L2 + {6L4(b4)
2 + 8L5a4b4}q0 + {L6(b4)

4 + 8L7a4(b4)3}(q0)
2] (B.3)

P2 = R2[L1 + {3L3(b4)
2 + 12L4a4b4 + 4L5(a4)

2}q0

+{4L6a4(b4)
3 + 12L7(a4)

2(b4)
2}(q0)

2] (B.4)

01 = 4K1a2 +K2b2 + 16K3(a2)
3 + 24K4b2(a2)

2 + 4K5a2(b2)
2 + 16K6b2(a2)

4

+16K7(a2)
3(b2)

2 (B.5)

02 = L1b4 +L2a4 + {L3(b4)
3 + 6L4a4(b4)

2 + 4L5(a4)
2b4}q0

+{L6a4(b4)
4 + 4L7(a4)

2(b4)
3}(q0)

2] (B.6)

with

R3 = 1

β
[∇F(x)]x=r (B.7)

R4 = 1

β
[∇f (x)]x=s (B.8)

wherer = JAB/2 ands = JABη0. The coefficientsKi andLi (i = 1–7) are defined by

K1 = sinh(a/2) cosh 3(a/2) cosh2(η1c)f (x)|x=0

K2 = (1/η1) sinh(η1c) cosh(η1c) cosh4(a/2)f (x)|x=0

K3 = sinh3(a/2) cosh(a/2) cosh2(η1c)f (x)|x=0

K4 = (1/η1) sinh(η1c) cosh(η1c) sinh2(a/2) cosh2(a/2)f (x)|x=0 (B.9)

K5 = (1/η1)
2 sinh2(η1c) sinh(a/2) cosh3(a/2)f (x)|x=0

K6 = (1/η1) sinh(η1c) cosh(η1c) sinh4(a/2)f (x)|x=0

K7 = (1/η1)2 sinh2(η1c) sinh3(a/2) cosh(a/2)f (x)|x=0

and

L1 = (1/η2) sinh(η2b) cosh3(η2b) cosh2(c/2)F (x)|x=0

L2 = cosh4(η2b) sinh(c/2) cosh(c/2) cosh4(η2b)F (x)|x=0
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L3 = (1/η2)
3 sinh3(η2b) cosh(η2b) cosh2(c/2)F (x)|x=0

L4 = (1/η2)
2 sinh2(η2b) cosh2(η2b) sinh(c/2) cosh(c/2)F (x)|x=0 (B.10)

L5 = (1/η2) sinh(η2b) cosh3(η2b) sinh2(c/2)F (x)|x=0

L6 = (1/η2)
4 sinh4(η2b) cosh(c/2) sinh(c/2)F (x)|x=0

L7 = (1/η2)
3 sinh3(η2b) cosh(η2b) sinh(c/2)F (x)|x=0

whereη1 andη2 are given by

(η1)
2 = d1 = G(JAB/2) (B.11)

and

(η2)
2 = d3 = G(JBη0). (B.12)

The coefficientsQi (i = 1–7) in (32) are defined by

Q1 = cosh4(η2b) cosh2(c/2)G(x)|x=0

Q2 = (1/η2)
2 sinh2(η2b) cosh(η2b) cosh2(c/2)G(x)|x=0

Q3 = (1/η2) sinh(η2b) cosh3(η2b) sinh(c/2) cosh(c/2)G(x)|x=0

Q4 = cosh4(η2b) sinh2(c/2)G(x)|x=0 (B.13)

Q5 = (1/η2)
4 sinh4(η2b) cosh2(c/2)G(x)|x=0

Q6 = (1/η2)
3 sinh3(η2b) cosh(η2b) sinh(c/2) cosh(c/2)G(x)|x=0

Q7 = (1/η2)
2 sinh2(η2b) cosh2(η2b) sinh2(c/2)G(x)|x=0

Q8 = (1/η)4 sinh4(η2b) sinh2(c/2)G(x)|x=0.

The coefficientsUi (i = 7–14) defined in (38) and (39) are given by

U7 = (b4/2)[4R4 − 3R1]

U8 = (b4/2)[2R1− R4]

U9 = (b4/2)[2R3− 3R2]

U10 = (b4/2)[2R2 − R3]

U11 = b2[4R4 − 3R1]

U12 = b2[2R1− R4]

U13 = a2[4R3− 3R2]

U14 = a2[2R2 − R3].

(B.14)
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